Introduction to optimisation

Lenie (H.M.) Goossens S4349113

November 10, 2023

Exercise 1

Let $\phi : \mathbb{R}^K \to \mathbb{R} \cup \{+\infty\}$ be closed and μ -strongly convex. Use the Reciprocity formula to show why the Fenchel conjugate of ϕ must be $\frac{1}{\mu}$ strongly convex. Solution:

Fencel conjugate: $\phi^*(x^*) = \sup_{x \in \mathbb{R}^N} \{x^* \cdot x - f(x)\}.$

Completly forgot the Reciprocity formula.

In all the follows, we consider the problem \mathcal{P} of minimizing a continuous and μ -strongly convex function $f : \mathbb{R}^N \to \mathbb{R}$ on $V = \{x \in \mathbb{R}^N : Ax = b\}$ where $A \in \mathbb{R}^{M \times N}$ and $b \in \mathbb{R}^M$

Exercise 2

Why can we assure that \mathcal{P} has a unique solution?

Solution:

Since f is strongly convex, we see that the minimization problem of f, has a unique solution. And this minimization problem is given by \mathcal{P} .

Exercise 3

Use the first order optimality condition to show that \hat{x} is a solution of \mathcal{P} iff $A\hat{x} = b$ and there exists $\hat{y} \in \mathbb{R}^M$ s.t. $-A^T y \in \partial f(\hat{x})$. We say (\hat{x}, \hat{y}) is an optimal pair.

Since f is continuous, we have $\partial(f + \iota_V) = \partial f + \partial \iota_V = \partial f + \operatorname{ran}(A^T)$. You do not need to prove this.

Solution:

For a general function $\beta : \mathbb{R}^N \to \mathbb{R}$ we see that if β is convex, then \tilde{x} is a minimum if $0 \in \partial \beta(\tilde{x})$.

Since f is strictly convex, so $f + \iota_V$ is is strictly convex we see that there is a unique

minimizer, which we call \hat{x} , so we see that $0 \in \partial (f + \iota_V)(\hat{x})$. Note that this means that $0 \in (\partial f + \operatorname{ran}(A^T))(\hat{x})$. But we see that $\partial \iota_V(x) = \operatorname{ran}(A^T)$ only if $x \in V$. Therefore we see that we must have $\hat{x} \in V$ so $A\hat{x} = b$. Therefore $0 \in \partial f(\hat{x}) + \operatorname{ran}(A^T)$. This means that $-\operatorname{ran}(A^T) \in \partial f(\hat{x})$. Note that $-A^T\hat{y} \in -\operatorname{ran}(A^T)$ so therefore we get indeed that $-A^T\hat{y} \in \partial f(\hat{x})$.

In the rest of the exam, we shall establish the convergence of a sequence (x_k, y_k) , constructed from an initial point $(x_0, y_0) \in \mathbb{R}^N \times \mathbb{R}^M$ by iterating

$$\begin{cases} x_{k+1} &= \arg\min\{L(x, y_k) : x \in \mathbb{R}^N\}\\ y_{k+1} &= y_k + \alpha(Ax_{k+1} - b) \end{cases}$$

with $\alpha > 0$ and $L(x, y) = f(x) + y \cdot (Ax - b) = f(x) + (A^T y) \cdot x - y \cdot b$ for each $(x, y) \in \mathbb{R}^N \times \mathbb{R}^M$.

Exercise 4

Why is x_{k+1} well defined?

Solution:

Since f is well-defined, and matrix multiplication is well defined, we see that L(x, y) is well-defined. Since $\arg \min(K(..))$ is only well defined if the thing inside the min brackets is well defined (so K(..)), we see that $\arg \min\{L(x, y_k) : x \in \mathbb{R}^N\}$ is well defined.

Exercise 5

Write the optimality condition satisfied by x_{k+1} (this comes from the first subiteration).

Solution:

First note that since f is convex, we have that $L(x, y_k)$ is convex for a fixed y_k on the set V.

We see that if $\hat{x} \in V$ minimizes f, it also minimizes $L(x, y_k)$. Note that $L(x, y_k)$ is also differentiable at \hat{x} .

Therefore we see that since we want that $L(\hat{x}, y_k) \leq L(x, y_k)$ for all $x \in V$, we must have by Fermat's rule that $\nabla L(\hat{x}, y_k) \cdot (x - x_k) \geq 0, \forall x \in V$.

Note that $\nabla L(x, y_k) = \nabla f(x) + A^T y_k$. Therefore we must have that $(f(\hat{x}) + A^T y_k) \cdot (x - x_k) \ge 0$ for all $x \in V$.

Exercise 6

Show that the dual \mathcal{D} of the problem \mathcal{P} is $\min\{h(y) : y \in \mathbb{R}^M\}$ where $h(y) = f^*(-A^T y) + b \cdot y$

Solution:

Note that we can write \mathcal{P} as f(x)+g(x) where $g(x) = \iota_V(x)$ and f(x) as in the equation. Therefore we see that the dual is given by

$$\inf_{y \in \mathbb{R}^M} \{ f^*(-P^T y) + g^*(y) \} \quad P \in \mathbb{R}^{M \times N}$$

Take P = A, so then we see that the dual is given by

$$\inf_{y \in \mathbb{R}^M} \{ f^*(-A^T y) + g^*(y) \}$$

If we can show that $g^*(y) = b \cdot y$, we see that we are done.

Since $g(x) = \iota_V(x)$ we see that $g^*(x) = \sup\{x \cdot z | z \in V\}$. Note that if $z \in V$ then Az = b. So we have that $g^*(x) = \sup\{x \cdot z | Az = b\}$.

Exercise 7

Compute $\forall h$ and verify that h is l-smooth with $l = \frac{\|A\|^2}{\mu}$. Solution:

We see that h is l-smooth if there exists l > 0 s.t. $\|\nabla h(z) - \nabla h(y)\| \le l \|z - y\|, \forall z, y \in V$. Now let $k(y) = -A^T y$, so we see that $h(y) = f^*(k(y)) + b \cdot y$. Therefore we see that

$$\nabla h(y) = \nabla f^*(y)|_{k(y)} \cdot \nabla k(y) + b \cdot \nabla y$$
$$= \nabla f^*(y)|_{k(y)} \cdot -A^T + b$$
$$= -\nabla f^*(y)|_{k(y)} \cdot A^T + b$$

Therefore we see that

$$\begin{aligned} \|\nabla h(z) - \nabla h(y)\| &= \|-\nabla f^*(x)|_{k(z)} \cdot A^T + b - (-\nabla f^*(x)|_{k(y)} \cdot A^T + b)\| \\ &= \|-A^T(\nabla f^*(x)|_{k(z)} - \nabla f^*(x)|_{k(y)})\| \\ &\leq \|A\| \cdot \|\nabla f^*(x)|_{k(z)} - \nabla f^*(x)|_{k(y)}\| \end{aligned}$$

Now use question 1. we see that f is μ smooth, so f^* is $\frac{1}{\mu}$ - smooth, so we get

$$\begin{aligned} \|\nabla f^*(x)|_{k(z)} - \nabla f^*(x)|_{k(y)} \| &\leq \frac{1}{\mu} \|k(z) - k(y)\| \\ &= \frac{1}{\mu} \|-A^T z + A^T y\| \leq \frac{\|A\|}{\mu} \|z - y\| \end{aligned}$$

date:November 10, 2023(S4349113)

Page 3

If we substitue this back we get indeed

$$\|\nabla h(z) - \nabla h(y)\| \le \frac{\|A\|^2}{\mu} \|z - y\|$$

Exercise 8

Show that the sequence (y_k) satisfies $y_{k+1} = y_k - \alpha \nabla h(y_k)$ Solution:

So it is enough to show that $-\alpha \nabla h(y_k) = \alpha (Ax_{k+1} - b)$ so $\nabla h(y_k) = b - Ax_{k+1}$ We see that $\nabla h(y) = -\nabla f^*(z)|_{z=-A^T y} \cdot A^T + b$. Therefore we get that $\nabla h(y_k) = -\nabla f^*(z)|_{z=-A^T y_k} \cdot A^T + b$. Therefore we see that it is enough to show that $\nabla f^*(z)|_{z=-A^T y_k} \cdot A^T = Ax_{k+1}$. But since I do not see how to work with $\nabla f^*(z)$ I do not see how to continue.

Exercise 9

For which values of α can we guarantee that the sequence (x_k, y_k) converges to an optimal pair (\hat{x}, \hat{y}) as $k \to \infty$. Express the result in terms of μ and ||A||.

Solution:

We see that $(x_k, y_k) \to (\hat{x}, \hat{y})$ as $k \to \infty$ if $\|(\hat{x} - x_k) + (\hat{y} - y_k)\| \xrightarrow{k \to \infty} 0$. Furthermore if $y_k \to \hat{y}$ as $k \to \infty$ then we see that $\|y_{k+1} - y_k\| \to 0$ as $k \to \infty$. So $\|-\alpha \nabla h(y_k)\| \to 0$ as $k \to \infty$.

$$\|\nabla h(y_{k+1}) - \nabla h(y_k)\| \le \frac{\|A\|^2}{\mu} \|y_{k+1} - y_k\| = \frac{\|A\|^2}{\mu} \|\alpha(Ax_{k+1} - b)\| = \frac{\|A\|^2 |a|^2}{\mu} \|Ax_{k+1} - b\|$$

Now use that we want that $x_{k+1} \to \hat{x}$ so $Ax_{k+1} - b \to 0$. So we have convergence if $\frac{\|A\|^2 |\alpha|^2}{\mu} < 1$. Therefore we ust have that $\alpha < \frac{\sqrt{\mu}}{\|A\|}$.

Exercise 10

What can you say about the convergence rate of this algorithm?

Solution:

The larger we make ||A||, the faster this function converges. Note that μ is fixed for a certain f.