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Exercise 1

Letϕ : RK → R ∪ {+∞} be closed andµ− strongly convex. Use the Reciprocity for-
mula to show why the Fenchel conjugate ofϕmust be 1

µ
strongly convex.

Solution:
Fencel conjugate:ϕ∗(x∗) = sup

x∈RN

{x∗ · x− f(x)}.

Completly forgot the Reciprocity formula.

In all the follows, we consider the problemP of minimizing a continuous andµ− strongly
convex function f : RN → R onV = {x ∈ RN : Ax = b}whereA ∈ RM×N and b ∈ RM

Exercise 2

Why can we assure thatP has a unique solution?
Solution:
Since f is strongly convex, we see that the minimization problem of f , has a unique
solution. And this minimization problem is given byP .

Exercise 3

Use the first order optimality condition to show that x̂ is a solution ofP iffAx̂ = b and
there exists ŷ ∈ RM s.t.−ATy ∈ ∂f(x̂). We say (x̂, ŷ) is an optimal pair.
Since f is continuous, we have ∂(f + ιV ) = ∂f + ∂ιV = ∂f + ran(AT ). You do not
need to prove this.
Solution:
For a general functionβ : RN → Rwe see that ifβ is convex, then x̃ is a minimum
if 0 ∈ ∂β(x̃).
Since f is strictly convex, so f + ιV is is strictly convex we see that there is a unique
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minimizer, which we call x̂, so we see that 0 ∈ ∂(f + ιV )(x̂).
Note that this means that 0 ∈ (∂f+ran(AT ))(x̂). But we see that ∂ιV (x) = ran(AT ) only
ifx ∈ V . Therefore we see that we must have x̂ ∈ V soAx̂ = b.
Therefore 0 ∈ ∂f(x̂) + ran(AT ). This means that−ran(AT ) ∈ ∂f(x̂).
Note that−AT ŷ ∈ −ran(AT ) so therefore we get indeed that−AT ŷ ∈ ∂f(x̂).

In the rest of the exam, we shall establish the convergence of a sequence (xk, yk),
constructed from an initial point (x0, y0) ∈ RN × RM by iterating{

xk+1 = argmin{L(x, yk) : x ∈ RN}
yk+1 = yk + α(Axk+1 − b)

withα > 0 andL(x, y) = f(x) + y · (Ax− b) = f(x) + (ATy) · x− y · b for each (x, y) ∈
RN × RM .

Exercise 4

Why isxk+1well defined?
Solution:
Since f is well-defined, and matrix multiplication is well defined, we see thatL(x, y) is
well-defined. Since argmin(K(..)) is only well defined if the thing inside the min brack-
ets is well defined (soK(..)), we see that argmin{L(x, yk) : x ∈ RN} is well defined.

Exercise 5

Write the optimality condition satisfied byxk+1 (this comes from the first subitera-
tion).
Solution:
First note that since f is convex, we have thatL(x, yk) is convex for a fixed yk on the
setV .
We see that if x̂ ∈ V minimizes f , it also minimizesL(x, yk). Note thatL(x, yk) is also
differentiable at x̂.
Therefore we see that since we want thatL(x̂, yk) ≤ L(x, yk) for allx ∈ V , we must
have by Fermat’s rule that▽L(x̂, yk) · (x− xk) ≥ 0,∀x ∈ V .
Note that▽L(x, yk) = ▽f(x) + ATyk. Therefore we must have that (f(x̂) + ATyk) ·
(x− xk) ≥ 0 for allx ∈ V .

date:November 10, 2023(S4349113) Page 2



Introduction to optimisation, University of Groningen H.M. (Lenie) Goossens

Exercise 6

Show that the dualD of the problemP ismin{h(y) : y ∈ RM}where
h(y) = f ∗(−ATy) + b · y
Solution:
Note that we can writeP as f(x)+g(x)where g(x) = ιV (x) and f(x) as in the equation.
Therefore we see that the dual is given by

inf
y∈RM

{f ∗(−P Ty) + g∗(y)} P ∈ RM×N

TakeP = A, so then we see that the dual is given by

inf
y∈RM

{f ∗(−ATy) + g∗(y)}

If we can show that g∗(y) = b · y, we see that we are done.
Since g(x) = ιV (x)we see that g

∗(x) = sup{x · z|z ∈ V }. Note that if z ∈ V thenAz =
b. So we have that g∗(x) = sup{x · z|Az = b}.

Exercise 7

Compute▽h and verify thath is l− smooth with l = ∥A∥2
µ

.
Solution:
We see thath is l− smooth if there exists l > 0 s.t. ∥▽h(z)−▽h(y)∥ ≤ l∥z−y∥, ∀z, y ∈
V . Now let k(y) = −ATy, so we see thath(y) = f ∗(k(y)) + b · y. Therefore we see
that

▽h(y) = ▽f ∗(y)|k(y) · ▽k(y) + b · ▽y
= ▽f ∗(y)|k(y) · −AT + b

= −▽f ∗(y)|k(y) · AT + b

Therefore we see that

∥▽h(z)− ▽h(y)∥ = ∥−▽f ∗(x)|k(z) · AT + b− (−▽f ∗(x)|k(y) · AT + b)∥
= ∥−AT (▽f ∗(x)|k(z) − ▽f ∗(x)|k(y))∥
≤ ∥A∥ · ∥▽f ∗(x)|k(z) − ▽f ∗(x)|k(y)∥

Now use question 1. we see that f isµ smooth, so f ∗ is 1
µ
− smooth, so we get

∥▽f ∗(x)|k(z) − ▽f ∗(x)|k(y)∥ ≤ 1

µ
∥k(z)− k(y)∥

=
1

µ
∥−AT z + ATy∥ ≤ ∥A∥

µ
∥z − y∥
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If we substiute this back we get indeed

∥▽h(z)− ▽h(y)∥ ≤ ∥A∥2

µ
∥z − y∥

Exercise 8

Show that the sequence (yk) satisfies yk+1 = yk − α▽h(yk)
Solution:
So it is enough to show that−α▽h(yk) = α(Axk+1 − b) so▽h(yk) = b− Axk+1

We see that▽h(y) = −▽f ∗(z)|z=−AT y · AT + b. Therefore we get that▽h(yk) =
−▽f ∗(z)|z=−AT yk ·AT+b. Therefore we see that it is enough to show that▽f ∗(z)|z=−AT yk ·
AT = Axk+1. But since I do not see how to work with▽f ∗(z) I do not see how to
continue.

Exercise 9

For which values ofα can we guarantee that the sequence (xk, yk) converges to an op-
timal pair (x̂, ŷ) as k → ∞. Express the result in terms ofµ and ∥A∥.
Solution:
We see that (xk, yk) → (x̂, ŷ) as k → ∞ if ∥(x̂− xk) + (ŷ − yk)∥

k→∞−−−→ 0.
Furhtermore if yk → ŷ as k → ∞ then we see that ∥yk+1 − yk∥ → 0 as k → ∞.
So ∥−α▽h(yk)∥ → 0 as k → ∞.

∥▽h(yk+1)− ▽h(yk)∥ ≤ ∥A∥2

µ
∥yk+1 − yk∥ =

∥A∥2

µ
∥α(Axk+1 − b)∥ =

∥A∥2|a|2

µ
∥Axk+1 − b∥

Now use that we want thatxk+1 → x̂ soAxk+1 − b → 0. So we have convergence

if ∥A∥2|α|2
µ

< 1. Therefore wemust have thatα <
√
µ

∥A∥ .

Exercise 10

What can you say about the convergence rate of this algorithm?
Solution:
The larger we make ∥A∥, the faster this function converges. Note thatµ is fixed for a
certain f .
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